If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+19y-15=0
a = 10; b = 19; c = -15;
Δ = b2-4ac
Δ = 192-4·10·(-15)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-31}{2*10}=\frac{-50}{20} =-2+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+31}{2*10}=\frac{12}{20} =3/5 $
| w-7.34=9.64 | | 19+3k=-8+6k | | 3^3x+3=6561 | | -3x^2+1=4x | | 11^x/11^3=11^2 | | 5(-3=x)=-20 | | n+11=27 | | 3+2(4+2)+1=20-2(2-x) | | 10(m-89)=40 | | 18+20j+19=-19-8j | | v=4v+4 | | 6a=-2(a+18) | | 4f-9=3 | | -7(w+6)=8w-12 | | 5(x-3)=-30+2x | | 2/9=4/a-6 | | 17-3g=2 | | 2c-48=22 | | 8x^2+11x=7 | | k^+-11=0 | | 4(4x-5)=-9x-7 | | 2^4x+3=2048 | | 7d-(-2)=79 | | -18n-20=-20+14 | | 3x-9=-8(x+8) | | g+33(8-8+22g)=11−g | | 2+(x+2)+7x=5 | | -8=7+3p | | -43+5m=-75 | | 1/2x-3=4+1/2x | | g+33(8−8+22g)=11−g | | -15+-g=-43 |